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Meet the 
Cluster Orbits With Perturbations Of Keplerian Elements (COWPOKE) 

Equations 

Chris Sabol', Craig A. McLaughlin^, and K. Kim Luu* 

Recent developments have indicated that it is possible to express the relative equations of 
motion for space objects in non-circular orbits using mean Keplerian elements and low order 
expansions. This paper provides the initial derivation of one such effort known as the Cluster 
Orbits With Perturbations Of Keplerian Elements (COWPOKE) equations. Given mean 
Keplerian elements and element differences, the COWPOKE equations describe spherical 
radial, cross-track, and along-track separations of the satellites as an explicit fimction of time. 
The framework of the equations allows for very high eccentricity reference orbits and for the 
inclusion of dynamic perturbations. Test cases using two-body dynamics show the utility of 
this approach. 

INTRODUCTION 

Cluster orbits are defmed as the relative trajectories of objects traveling through space in close proximity to each 
other. Clusters occur when satellites in similar orbits approach each other, groups of satellites fly in formation to 
perform specific mission ftmctions, or several objects are launched or deployed from the same object. Each case has 
its own unique nuances, but the dynamics of how the objects move relative to each other are ftmctionally the same. 

The number of satellites in the geosynchronous belt has been steadily increasing for ahnost 40 years. While the 
number of satellites has been increasing, the space in the geosynchronous belt has not. This has led to more clusters 
of satellites operating in close proximity of each other and often unintentionally passing within kilometers of their 
neighbors'. Clusters of objects at this great altitude have been a long-standing challenge to space surveillance where 
the satellites can be mistaken for each other. 

In recent years, there has been increasmg interest in the use of satellites flying in formation. Several missions and 
mission statements have identified formation flying as a means of reducing cost and adding flexibility to space based 
programs or to accomphsh goals that are not possible or very difficult to accomplish with a single satellite. These 
missions include NASA's Earth Observing-1 flying in formation with Landsat-7 and several European missions. In 
addition NASA has developed over 20 concepts for fiiture missions involving formation flying. Many of these 
missions involve highly eccentric orbits. 

During balUstic missile launches, several objects can achieve low earth orbit including the reentry vehicle, booster, 
fairings, and the possibility of several balloon-like decoys attempting to confuse missile defense systems. It is the 
responsibility of the missile defense system to track the cluster of objects and quickly identify the reentry vehicle. 

The Cluster Orbits with Perturbations of Keplerian Elements (COWPOKE) equations can provide the theoretical 
foundation for analysis tools supporting a variety of applications. Optical space surveillance often reveals multiple 
satellites in a single telescope field of view. An understanding of the relative dynamics may allow for satellite 
identification based solely on relative position. Further research may apply these results to relative orbit 
determination of objects in a cluster or during close approach encounters. This approach may prove to be more 
accurate than performing orbit determination on the individual objects and determining differences. The equations 
might also be used to support the missile tracking experiments. If tracking sensors have limited fields of view, they 
may be required to track baUistic clusters individually; meaningful relative equations of motion may simplify the 
transition from object to object. Even if objects are tracked simultaneously, the relative equations of motion can be 

' Air Force Research Laboratory, Directed Energy Directorate, 535 Lipoa Parkway, Suite 200, Kihei, HI 96753 
^Space Studies Department, University of North Dakota, 4149 Campus Rd., 530 Clifford Hall, Grand Forks, ND 
58202-9008 



used as part of the discrimination process to identify balloon-like decoys. The COWPOKE equations would also be 
extremely relevant to satellite formation flying work, such as the initial Air Force Research Laboratory's TechSat 21 
program, for formation flying design, analysis, and guidance and control applications. While a great deal of work 
has aheady been completed in support of formation flying missions, none provide the level of intuition and 
understanding as one that uses Keplerian elements. In addition, none of the work is accurate for long-term relative 
motion for orbits with eccentricities up to 0.7. 

A simple set of equations describing the relative motion of spacecraft clusters is needed for analysis, design, and/or 
tracking of clusters. Much of die previous work in this field has relied on using Hill's equations^ (also known as the 
Clohessy-Wiltshire equations^). Hill's equations describe die relative motion of spacecraft using a spacecraft- 
centered coordinate system. However, Hill's equations assume that the reference orbit is circular, the objects are 
close together, and there are no perturbations to simple two-body motion. Several researchers have pointed out the 
severe limitations inherit in these assumptions. To rectify this, Gim and Alfriend" used energy methods to develop a 
state transition matrix to describe relative motion in non-circular orbits under the influence of perturbations. While 
closed form analytic solutions in a transformed variable space are valuable for analysis, these approaches may be 
awkward for many appUcations since transformations are required to go from the canonical variable space to more 
traditional representations of satellite orbits such as Keplerian elements. Additionally, most working level engineers 
lack the background to implement this approach. Previous work by Garrison et al.' developed equations of motion 
for elliptical orbits in terms of the true anomaly instead of time. Also, these equations were developed with 
rendezvous in mind and are developed only to second order in eccentricity. In addition. Melton developed a state 
transition matrix for relative motion in eccentric orbits that is time dependent. Melton relied on some of the same 
foundations that are used in this paper, but the development was only to second order in eccentricity and is not 
accurate for orbits of high eccentricity. Baoyin et al,'^ did similar work but assumed matching orbital periods; this 
work also provides physical insight into formation flying in near circular orbits. This paper develops physically 
meaningfiil equations of relative motion for space objects in non-circular orbits using Keplerian elements. 

Previous work by the authors^ led to the development of a set of equations that describe the first order effects of 
Earth oblateness on the relative motion of objects in circular orbits. In addition, they developed a sinqjle set of 
equations to describe the effects of Earth oblateness for polar orbits. Then, they further developed the equations to 
describe the motion for all inclinations*. Finally, they examined the long-term evolution of the relative motion for 
circular orbits and presented an approach to describe relative motion of satellites in elliptical orbits without 
perturbations and assuming matching periods'. This last step provided the building blocks for the COWPOKE 
equations. 

In the past, equations of relative motion such as Hill's equations were developed by differencing the quasi-inertial 
equations of motion and mapping those differences into the rotating coordinate system. The result was a set of 
equations that describe the relative differences between the satellites typically in terms of radial, cross-track, and 
along-track con^onents. Rather than using the traditional algebraic approach, the COWPOKE equations are 
developed using a geometric approach. Here, the geometric properties and definitions of Keplerian orbital elements 
will be used directly to map orbital element differences into the radial, cross-track, and along-track relative motion. 
In addition to the increased intuitiveness of a geometric approach, by using Keplerian orbital elements and 
differences in those orbital elements, we can take advantage of existing perturbation model development and 
incorporate meaningful dynamics into the relative equations of motion much easier than with the algebraic 
approaches. 

There are challenges to this approach. First and foremost, the geometric properties of Keplerian elements are a 
function of the true anomaly, which has non-uniform variation witii time. Ideally, analytical solutions are expressed 
in terms of the mean anomaly, which does vary linearly with time (outside the influence of perturbations). The 
relationship between the mean anomaly and eccentric anomaly is given by the well- known transcendental Kepler's 
equation. This research uses a series expansion to approximate the true anomaly as a function of time. A relation of 
this sort was successfully employed as part of the building blocks of the COWPOKE equations. 

Using that one relationship, one can construct the relative motion of formation flying satellites by reconstructing the 
orbits individually based on their Keplerian elements and then differencing the two. This paper develops true 
equations of relative motion for clusters of objects.   And, unlike the previous work, this research incorporates 



perturbation models and be generalized to account for small differences in semimajor axis. This results in a set of 
equations that describe the radial, cross-track, and along-track differences between two space objects in formation or 
a cluster based on Keplerian orbital element differences. 

APPROACH 

The formulation of the COWPOKE equations has three major challenges. The fu-st is choosing a suitable reference 
frame for the relative equations of motion and expressing that frame in terms of Keplerian elements and element 
differences. The second is representing the geometrical true anomaly as a ftmction of time. The final challenge is 
incorporating relevant perturbation effects. Only the first two challenges are addressed in this work. 

Classical relative motion approaches use a Cartesian reference frame to describe relative motion. The components of 
this frame are radial, cross-track, and along-track differences. A limitation of this approach is that significant cross- 
mapping between components occurs when the separation distance between the satellites is not small. For instance, 
if two satellites travel together in a circular orbit but are separated by 0.01 rad in true anomaly, the relative position 
of one satellite with respect to the other will have an along-track separation as anticipated but will also have a radial 
conponent despite the fact that the satellites are at the same altitude and within the same orbit. Relative position 
difference components that are artifacts of the chosen coordinate frame, such as the one outlined in the preceding 
exan^jle, can greatly conplicate the analysis of the relative motion. 

A second coordinate frame choice is to use spherical separations. Here, the relative position difference is described 
by an altitude difference from a sphere having the radius of the reference satellite and angular components 
perpendicular to and along the reference satellite's direction of motion projected onto the sphere. These 
conq)onents, dr, dxt, and Sat, are illustrated in Figure 1. The spherical reference frame is well-suited to describing 
the position of satellites in circular or near-circular orbits; however, when the orbital eccentricity becomes large, the 
spherical reference frame suffers from the same limitations as the Cartesian system. 

A third option to describe the relative motion of satellites in elliptic orbits is to use an ellipsoidal reference system. 
This is similar to the spherical system except that the components are mapped along an ellipsoid rather than a sphere. 
This method has geometric challenges describing altitude variations and can still result in difficult to understand 
position differences. 

For this formulation, we chose the spherical reference frame since it's slightly better than Cartesian for describing the 
orbital motion and provides the physical insight we desire. Additionally, it is a simple geometric mapping between 
spherical and Cartesian given the quantities described in this work if Cartesian coordinates are desired. In fact, the 
desired reference frame will likely be a function of apphcation, but it is hoped that enough information is provided 
here so these equations can be easily reformulated in other reference frames. 

sr: a- 

Figure 1: The Spherical Reference Frame for Relative Motion 



The spherical coordinate system used here can be realized using position and velocity vectors of the two satellites: 
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Here, the auxiliary vector quantities, denoted by primes, are introduced so right planar triangles can be used in the 
determination of desired angular values. The spherical components can be expressed in terms of Keplerian elements 
by using the following defmitions'": 
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However, the resulting equations become difficult to manipulate. Instead, a simple geometrical mapping of 
Keplerian element and element differences into the spherical components of relative motion can be achieved with the 
following: 
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The spherical cross-track and along-track terms are, in fact, approximations accurate to first order in the Keplerian 
elements differences. Figure 2 illustrates how these terms are derived. 

<D sin(/, )cos((o^ + Sco + f^+Sf) 

Figure 2: Spherical Components in Terms of Keplerian Elements and Element Differences 

We can further simplify the radial expression to first order in the Keplerian element differences: 

Sr 
1 - gi       ^ , - a(2e, + (1 + e, ) cosjf,)) ^ ^ a,e, (1-e,) sin(/,) 

l + e,cos(/i) (l + e,cos(f,)y (l + e,cos(f,)y 
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From these Keplerian element representations of the relative motion, we can derive some physical insight into how 
orbital differences result in relative motion. If we assume a circular reference orbit, Eqs. (3) and (4) resemble the 
solutions to Hill's equations where the cross-track motion becomes a simple oscillation, the altitude difference maps 
directly into the radial motion with a periodic variation introduced by tiie eccentricity, and the altitude difference 
couples into the along-track component through the true anomaly resulting in a combination of secular and periodic 
effects'. 

While the equations above are useful and do help provide physical insight into the relative motion, they are 
expressed in terms of true anomaly. To express the relative motion as a function of time, one must express the above 
equations in terms of mean anomaly. At a fundamental level, this entails finding a suitable approximate solution to 
Kepler's equation. Battin provides several methods for doing so'". For the initial COWPOKE development, it was 
decided to use a Fourier-Bessel expansion of the true anomaly in terms of the mean anomaly and eccentricity. 

Using the geometric properties of the true and eccentric anomalies and Kepler's equation, the following relationship 
can be found: 

^ 1- 

dM    {\-ecosEf 
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This can be expressed in terms of a Fourier cosine series that introduces the Bessel functions, J„: 
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Integrating this equation with respect to the mean anomaly provides an expression for the true anomaly in terms of 
the mean anomaly: 

00      1 

f = M+2j,- l.U-ke)l^ 
\k+n\ sm{kM) (7) 

The result of this expansion is a sine series with coefficients that are power series in eccentricity. The lowest order 
of eccentricity for each coefficient series is k; thus the upper limit for k can be chosen based on the eccentricity of 
the reference orbit and the desired accuracy. Figure 3 plots eccentricity to the (k+1) power. The figure is meant to 
provide an indicator for the relative'accuracy of Eq. (7) for a given eccentricity and choice of k. For instance, if one 
had a references eccentricity of 0.3 and desired series truncation errors below 1%, then one would choose to truncate 
the series at k=4 or the fourth power of eccentricity. When k=8, one sees errors below 10% up to e=0.7. 
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Figure 3: Relative Error Order of Magnitude for Eccentricity Series 

Evaluating Eq. (7) up to the niath frequency term (8M) yields: 
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In examining Eq. (8), one can see that the leading term m each of the eccentricity series does not decrease for all 
eccentricities; however, the second term in the eccentricity series is always negative and serves to reduce the 
magnitude of that frequency's contribution to the expansion as a whole. Thus, the an5)litude of each frequency term 
decreases as the frequency increases allowing convergence of the entire expansion if enough terms are included in 
each individual eccentricity series. This means that for higher values of eccentricity, it is very in^ortant to include at 
least two or more terms for each eccentricity series. In Eq. (8), if the e' and e'" terms were left out of the 7A/and 8M 
frequency terms, the error due to this truncation could be larger than if the 7M and 8M terms were not included at all. 
For higher values of eccentricity, care must be taken to make certain that enough terms are included in each 
eccentricity series to ensure one is not adding error with a given frequency term. The good news is that each 
eccentricity series converges fairly quickly so that powers of eccentricity at lower frequencies are much less 
important than at higher frequencies; this means that one can get away with fewer terms in each eccentricity series 
even if higher frequency terms are required. Additionally, for smaller values of eccentricity, 0.3 and below, 
truncation becomes much less of an issue since the e^ factor greatly reduces the impact of the higher order terms in 
each eccentricity series and each higher frequency. 



Truncation issues aside, the Fourier-Bessel series expansion of the true anomaly is an important component to the 
formulation of the COWPOKE equations; however, an additional step must be taken to map mean anomaly 
differences into true anomaly differences. This is accomplished by simply applying a fnst order perturbation to Eq. 

m (9) 

The general formulation includes higher order element difference terms and coupling terms between the element 
differences but for cluster orbits, including the fu-st order terms should provide accuracy to two orders of magnitude 
smaller than the separation distance. Including only the first order difference terms for the true anomaly expression 
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The truncation issues for Eq. (10) are similar to those of Eq. (8) but are further compounded by the exponential 
factors produced when taking the partial derivative with respect to eccentricity. Note that the e' coefficient is twice 
as large as the e' coefficient in the 8Af frequency series for the 5e component. 

For unperturbed satellite motion, we can express the mean anomaly as a ftmction of time SM as a function of SM at 
epoch, semimajor axis difference, and time: 

4 t,SM=SM,+ j—-4m-J-4 M, = Mo + (11) 



If one chooses, the mean motion tenns in the above expression can be replaced by a second order perturbation of the 
mean motion with respect to 5a without significant error for most appHcations: 

m = SM, + ^(-- af'Sa + j a^^'Sajt (12) 

Eqs. (8), (10), and (11) can now be substituted mto Eq. (3) to complete the COWPOKE equations for unperturbed 
satellite motion. Here are the COWPOKE equations with only fnst order eccentricity terms included in the 
expansion of the true anomaly and true anomaly difference: 
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Note that we have taken the linearized form of the radial component as presented in Eq. (4). From Figure 3, we 
would expect that these equations are acciffate to the 1% level up to eccentricities of 0.1. 

While this work does not currently include perturbations to the satellite dynamics, one of the key focuses of the 
COWPOKE development was to allow for the inclusion of additional force model effects. This can be acconplished 
by expressing the Keplerian elements and element differences as functions of time. This will be the focus of future 
work. 

RESULTS 

Simulations were performed to quantify the error inherent in the approximations used in the COWPOKE formulation 
for two test cases. The first test case employed a near-circular, low-Earth orbit (e=0.01) and the second a high 
altitude eccentric orbit (e=0.7). The test cases were performed in the MATLAB environment usiag two-body 
dynamics; it is xmderstood that that these sunulations only measure the effectiveness of the COWPOKE equations to 
model two-body motion and are not indicative of the performance for real satellite motion. 

Truth data for the simulations were determined by calculating the mean anomaly of each satellite as a function of 
time, converting the Keplerian elements to position and velocity vectors (with an algorithm taken fi:om Vallado ), 



and then mapping the position differences into the spherical radial, cross-track, and along-track components 
described in Eq. (1). The COWPOKE results come from a direct mapping of the Keplerian element and element 
differences into those components using the methods described in the previous section. It should be noted that the 
angular cross-track and along-track values, a and /?, were used for comparison purposes in the simulations rather 
than the arc-lengths, 8x.t and dot. Some additional error m the arc-lengths will be present due to the error in 
estimating the magnitude of the position vector of the reference satellite, but that is typically the same order of 
magnitude or smaller than the error in the angular separation. 

Table 1 contams the orbital elements and element differences for the near-circular, low-Earth orbit (LEO) case; the 
reference satellite, satellite 1, has the initial Keplerian elements given in the "Reference Elements" column while the 
second satellite, satellite 2, has the initial Keplerian elements of the "Reference Elements" plus the "Element 
Differences." The simulation span covers 2 hours or just over one orbital period. The COWPOKE formulation 
includes only furst order eccentricity terms and uses the radial component approximation; these equations were 
identical to Eq. (13). 

Table 1: Keplerian Elements and Element Differences for LEO Test Case 
Reference 
Elements 

Element 
Differences 

a 7000 km 0.01km 
e 0.01 0.01 
i 0.785 rad (45 deg) O.Olrad 

Q 0 rad (0 deg) 0.01 rad 

(B 4.712 rad (270 deg) 0.01 rad 

Mo 1.751 rad (90 deg) 0.01 rad 

Figures 4-6 plot the spherical radial difference, angular cross-track, and angular along-track separations, 
respectively. Each figure actually contains two plots: the fnst shows the satellite separations described by the truth 
orbits and the COWPOKE approximation, and the second shows the differences between the truth and COWPOKE 
methods. Thus, the second plot in each figure is the error inherent in the given COWPOKE formulation. 

Figure 4 shows the COWPOKE radial error to be around the 2% level. Figures 5 and 6 show the COWPOKE cross- 
track and along-track errors are below 1%. It is interesting to note fliat the radial and cross-track conponent errors 
have frequencies that appear to be once per orbit while the along-track component has an error frequency of twice 
per orbit. We test the COWPOKE approximations directly to determine the dominant sources of these errors. 

Before continuing with the error analysis, it is useful to examine Figures 4-6 and observe the physical insight into the 
relative motion we can gain from the COWPOKE equations. Eq. (4) tells us that the relative motion in the radial 
direction is dominated by a once per orbit signature due to the eccentricity differences; the contributions from the 
semimajor axis difference are small, and the contribution from the true anomaly difference is an order of eccentricity 
smaller than the contribution from the eccentricity difference. Eq. (3) shows that the cross-track motion is comprised 
of once per orbit signatures from the uiclmation and right ascension of the ascending node differences. Eq. (13) 
indicates that the along-track motion is offset from zero due to the right ascension, argument of perigee, and mean 
anomaly differences but also has a once per orbit periodic signature wdth an an^litude of twice the reference 
eccentricity. 
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Figure 6: LEO Test Case Angular Along-Track Differences and COWPOKE Errors 

Figure 7 plots the error in the first order Fourier-Bessel series expansion of the true anomaly of the reference 
satellite. From Figure 3, we expect to see around 1% error, and we do. Also note the twice per orbit signature in the 
error plot; this is also expected since the expansion only include once per orbit terms. Figxire 8 plots the error in the 
approximation of the true anomaly difference; the error in this approximation is similar to the error in the true 
anomaly approximation. One sees that the dominant part of the along-track error is due to the COWPOKE 
approximation error of the true anomaly difference. If one chose, this error could be reduced by adding additional 
terms to the series approximation for this variable. 
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Figure 9 plots the errors in the COWPOKE coordinate system approximations for the LEO test case. One can see 
that the dominant part of the radial and cross-track errors is due to the coordinate system approximations made in the 
COWPOKE formulations. The radial component error can be reduced by using the analytical formulation for the 
radial difference while an improved description of the cross-track component would have to be derived to reduce the 
cross-track error. 

Table 2 contains the orbital elements and element differences for the highly eccentric Earth orbit (HEO) test case. 
The simulation spans 12 hours or just over one orbital period. The COWPOKE formulation includes eighth order 
eccentricity up to frequency 6M and tenth order eccentricity in frequency IM and 8M; these are all of the terms 
included in Eqs. (8) and (10). This test case does not use the radial component approximation. 

Table 2: Keplerian Elements and Element Differeiices for HEO Test Case 
Reference 
Elements 

Element 
Differences 

a 27000 km 0.01km 

e 0.7 0.01 
i 0.785 rad (45 deg) O.Olrad 

Q. 0 rad (0 deg) 0.01 rad 

(0 4.712 rad (270 deg) 0.01 rad 

Mo 1.751 rad (90 deg) 0.01 rad 

Figures 10-12 plot the spherical radial difference, angular cross-track, and angular along-frack separations, 
respectively. As with Figures 4-6, the furst plot in each figure shows the satellite separations described by the truth 
orbits and the COWPOKE approximation, and the second plot shows the differences between the truth and 
COWPOKE methods. Thus, the second plot in each figure is the error inherent in the given COWPOKE formulation 
for this highly eccentric test case. 
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Figure 12: HEO Test Case Angular Along-Track Differences and COWPOKE Errors 

Figure 10 shows the COWPOKE radial error to be significant with maximum errors being on the same order of 
magnitude as the relative altitude differences. Figures 11 and 12 show the COWPOKE cross-track and along-track 
errors are on the order of 10%. The sources of these errors can be determined by analyzing the approximations used 
in the COWPOKE formulation. 

Figure 13 plots the error in the Fourier-Bessel series expansion of the true anomaly of the reference satellite. From 
Figure 3, we expect to see around 10% error, and we do along with a mixture of frequencies in the signature due to 
the series truncation. The error in the true anomaly approxunation maps into the frequency terms and becomes the 
dominant source of error for the cross-track component. Figure 14 plots the error in the approximation of the true 
anomaly difference; the error in this approximation is an order of magnitude smaller than the error in the true 
anomaly approximation since we have removed an order of eccentricity in the differentiation process and replaced it 
by an eccentricity difference. Since the eccentricity difference is an order of magnitude smaller than the eccentricity, 
the eccentricity difference error is much smaller. One can see that the dominant part of the radial and along-track 
errors is due to the COWPOKE approximation error of the true anomaly difference and likely the eccentricity series 
truncation for the SM frequency terms. If one chose, these errors could be reduced by adding higher order terms to 
the series approximations for these variables. 



Figure 13: True Anomaly Approximation Error for HEO Test Case 

Figure 14: True Anomaly Difference Approximation Error for HEO Test Case 

Figure 15 plots the errors in the COWPOKE coordinate system approximations for the HEO test case. There is no 
plot for the radial conqionent since the radial approximation was not used, and thus the coordinate system error is 
zero. The cross-track and along-track components remain around or below the 1% level even for the high 
eccentricity case. It would seem that the coordinate system gives the COWPOKE equations an error bound of about 
1%. 
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Figure 15: COWPOKE Coordinate System Approximation Errors for LEO Test Case 

The cross-track and along-track errors for the HEO case are in line with expectations given the series truncations 
made in the COWPOKE formulation for this test case. The source of the radial error was larger than expected or 
desired. Further analysis of Eq. (4) shows that there is coupling between the true anomaly error and the eccentricity 
difference. The only way to mitigate this error is to reduce the error in the true anomaly difference approximation 
which can be accomplished by adding additional terms to the series expansion or by solving Kepler's equation 
iteratively. This would also serve to reduce the along-track errors as well. 

Despite the errors present in the HEO test case, the COWPOKE equations still model bulk of the relative motion 
fairly well, and the geometric foimdation on which the equations are built can provide a fair amount of physical 
insight into the relative motion. For the HEO case, the physical insight is very similar to the LEO test case except we 
now observe that the true anomaly does not vary linearly with time. While the series expansions do not provide a 
great deal of insight into how the true anomaly varies, those who are familiar with the concept should be able to 
anticipate the trends. In Figures 10-12, we see that as the satellite moves towards apogee (recall the initial mean 
anomaly was 90 deg), the true anomaly rate slows which pushes the relative motion extrema to toward the time of 
perigee passage. It is interesting to note that initial true anomaly difference is a function of the mean anomaly 
difference, eccentricity, and the initial mean anomaly; a small mean anomaly difference at perigee of a highly 
eccentric orbit maps into a much larger true anomaly difference than if the initial conjjitions occurred at apogee. 
Additionally, one must be aware of this fact when considering error sources in the COWPOKE formulation since 
only first order differences in the Keplerian elements have been included in the equations above. Finally, from the 
COWPOKE equations, one can see that the argument of perigee also plays a significant role in the relative motion 



since the cross-track motion is dependent on both the true anomaly and the argument of perigee. The argument of 
perigee essentially controls the phasing between the cross-track and radial/along-track components of motion. 

CONCLUSIONS AND FUTURE WORK 

This paper derived the Cluster Orbits With Perturbations Of Keplerian Elements (COWPOKE) equations for 
unperturbed satellite motion. A general framework is provided to generate a set of equations which describe the 
relative motion between satellites in eccentric orbits explicitly as a function of the Keplerian elements of the 
reference satellite, Keplerian element differences, and time. This is accon^lished using a geometric description of 
the separation between the satellites to form the basis of motion and dien by using a Fourier-Bessel series expansion 
of the true anomaly in terms of the mean anomaly. True anomaly and radial differences are derived using first order 
perturbation methods. The resulting equations are meant to provide accurate representations of the relative motion 
between satellites, to be simple to implement, and to provide physical insight into the relative motion. Test cases 
show that this has been accomplished to a certain degree. 

The geometric basis on which the COWPOKE equations are buih is accurate to the 1% level when compared to the 
separation distances. This is currently the theoretical accuracy limitation. For most applications where the 
eccentricities are below 0.1, the COWPOKE equations are easily realizable and can be as accurate as the limitations 
of the geometric basis; however, the practical limitation for highly eccentric cases comes from generatmg enough 
terms in the series expansion of the true anomaly to reduce approximation errors to an acceptable level. This work 
shows that the radial component of the relative motion in our spherical reference system is particularly sensitive to 
true anomaly errors for high eccentricity orbits. 

The next step in the development of the COWPOKE equations will be to include dynamic perturbation effects mto 
the relative motion. Reference 8 has shown how secular effects due to Earth's oblateness can be incorporated using 
Keplerian elements and element differences. Simulations will also be performed to determine what other 
perturbations are required to support applications such as modeling geosynchronous clusters. We will also look into 
the invertibility of the COWPOKE equations. Here we will attempt to solve for Keplerian element differences based 
on desired or observed relative motion. This would be tremendously useful for formation design and 
geosynchronous close approach calculations. 
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ABSTRACT 

Optical satellite tracking often reveals multiple satellites in a single telescope field of view. The Cluster Orbits With 
Perturbations Of Keplerian Elements (COWPOKE) equations are used to estimate die relative motion of 
geosynchronous satellites and determine if the satellites can be later identified based solely on relative position. This 
paper provides the development of the COWPOKE equations for modeling the relative motion of geosynchronous 
satellites and analysis demonstrating the feasibility of using these techniques for object correlation. Real data 
relative orbit determination results are provided using the optical tracking assets of the Air Force Maui Optical and 
Superconqjuting (AMOS) site. 

1. INTRODUCTION 

Clusters of spacecraft in geosynchronous orbit (GEO) are becoming more common. Orbital slot allocations in GEO 
are rapidly being filled, and it is increasingly difficult to acquire slots for new satellites. Consequently, many 
organizations opt to collocate their spacecraft in the same slot. Eutelsat had as many as five satellites collocated in a 
formation at 13° E by 2001 [']. In addition, unintentional close approaches have occurred and could become more 
frequent as the GEO belt becomes more crowded. In 1997, Telstar 401, a satellite in GEO, experienced a major 
failure, and control of the spacecraft was lost ["]. It is drifting in GEO and has had encounters with other satellites as 
close as 4 km ["']. Since that time, other GEO spacecraft have also begun drifting uncontrollably. Close approaches 
and satellite formations create a challenge for space surveillance. Identification of the satellites in these clusters can 
be difficult, and cross-tagging (misidentification) occurs ["]. Resolvable imaging can be used to identify spacecraft 
in low Earfli orbit but is not currently possible for GEO altitudes. Non-imaging approaches include comparing the 
brightness and characterizing the color of light reflected from the spacecraft for identification purposes f]. 
However, identifying spacecraft solely from their dynamics would eliminate the need for special filters or other 
sensors. A better understanding of the relative motion of the spacecraft could reduce cross-tagging and improve 
close approach predictions. Improved determination of minimum approach distances could eliminate unnecessary 
collision avoidance maneuvers and minimize propellant usage. 

Cluster orbits can be modeled using the Cluster Orbits With Perturbations Of Keplerian Elements (COWPOKE) 
equations of motion ["]. The COWPOKE equations predict spacecraft separations in the spherical radial, along- 
track, and cross-track coordinate frame based on the Keplerian elements of the reference satellite, the element 
differences for the second satellite, and elapsed time. These inputs for COWPOKE can be obtained with relative 
metric data from optical sensors or space surveillance products. Charge-coupled device (CCD) images of clusters of 
spacecraft should provide very accurate measurements of spacecraft separation since in-frame error sources 
theoretically cancel out. The United States Air Force currently operates several optical systems capable of imaging 
clusters at the Maui Space Surveillance Conplex, such as Raven, Phoenix, and the Groimd-Based Electro-Optical 
Deep Space Surveillance System (GEODSS). Raven uses small, commercially available telescopes to acquire CCD 
images of space objects for tracking [™]. Astrometry is used to match stars in the CCD image to the star catalog. 
Thus, the pointing accuracy of the images can approach the acciu-acy of the star catalog used. Phoenix is a Baker- 
Nunn telescope refiirbished to take wide-angle CCD images [™']. As many as 21 satellites have been detected in one 
Phoenix image. After the Deep Stare upgrade, GEODSS could be used to acquire relative metrics as well. 



This paper is an extension of previous work exploring the apphcation of COWPOKE towards geosynchronous 
cluster orbit prediction ["]. First, a perturbation study is conducted to determine the force modeling required at 
GEO. Improvements are made to the COWPOKE equations that allow for better representation of GEO motion. A 
method is constirued to estimate the Keplerian element differences using optical measurements of relative right 
ascension and declination. Finally, results are discussed for which COWPOKE was used to predict the relative 
motion of a cluster of satellites in GEO. 

2. USEVG COWPOKE AT GEO 

A study was conducted to identify perturbing forces that significantly affect the relative motion of a cluster of 
geosynchronous satellites. The effects of centi-al body gravity, third body gravity, and solar radiation pressure were 
investigated using the Draper Semianalytic Satellite Theory (DSST). The Draper research and development version 
of the Goddard Trajectory Determination System (DGTDS) was used to propagate the orbits with DSST ["]. The 
motion of two spacecraft was propagated to generate a "truth" relative motion using an 8x8 JGM-2 geopotential 
field, luni-solar third-body pomt-mass using JPL ephemerides, and solar radiation pressure (SRP) based on a 
spherical satellite and cylindrical Earth-shadow model. Next, the relative motion of the two spacecraft was 
generated while neglecting one of the sources of perturbations, such as third-body gravity. The radial, along-track, 
and cross-track separations obtained fi:om the "truth" relative motion were conqjared to those generated with the 
inconplete force model to find the approximate error that would result firom neglectitng that perturbation source in 
the COWPOKE formulation. These test runs were conducted two times; the furst set of runs included long period 
effects propagated over 30 days, and the second set investigated short periodic effects propagated over 5 days. 
Table 1 shows the reference elements and the differential elements used in the propagation. 

Table 1. Initial conditions for DSST runs 
referenced to the mean equator and equinox of the B1950.0 coordinate system. 

Keplerian 
Elements 

Reference 
Elements 

Element 
Differences 

a 42,164 km 0 
e 0.01 0.01 
i 3° r 

Q 0° 1° 
(0 0° r 

Mo 0° 1° 

Cases that neglected all non-spherical gravity forces were conducted at differing initial mean anomalies. Those 
omitting higher order geopotential terms, but including J2, were conducted with varying longitudes of the node to 
survey the longitudinal dependencies of the tesseral harmonics. Tests examining luni-solar effects ran at varying 
days of the year while those for SRP effects used different days of the year as well as at various differential area-to- 
mass ratios for the spacecraft. Errors were calculated by dividing the difference in radial, along-tirack, or cross-track 
separation by the maximum separations. Fig. 1 shows the worst case errors produced by neglectmg each of the 
perturbing forces after 30 days. 

The SRP results in Fig. 1 arise from a case in which the area-to-mass ratio of one satellite is ten times that of the 
other. As the separation between the spacecraft decreases to zero, the effect of neglecting gravitational effects also 
decreases to zero; however, SRP effects do not decrease to zero if the area-to-mass ratios differ. Because of this, 
SRP effects should be taken into accoimt if high accuracy is warranted over long periods or if the satellites are within 
several kilometers. 

The effects of SRP on an orbit were formulated using Keplerian elements and the element differences, assuming that 
the latter quantities are small. However, because Keplerian elements are singular for i = 0 and e = 0, orbits in GEO 
can have large differences in Q, ©, and Mo and still remain within a few kilometers of each other. Simulations found 
that this formulation of SRP did not prove to be usefiil for GEO and therefore was not used in later tests. However, 
for most cases, two-body motion results in acceptably low error. 
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Fig. 1. Maximum error encountered in the separation of two satellites at GEO due to the neglect of a 
perturbing force after a 30-day orbit propagation. 

Another source of orbit perturbation is stationkeeping and momentum control maneuvers. Since maneuvers were not 
modeled in COWPOKE, they present an additional source of error if occurring during the observation period. 

3. IMPROVED COWPOKE EQUATIONS 

Although COWPOKE has been shown to be an effective predictor of the relative motion of a cluster of satellites, 
there are some sources of error. For GEO, the right ascension of the ascending node, argument of perigee, and mean 
anomaly element differences may not be small which violates the assumptions of the original COWPOKE derivation. 
In particular, the approximation of the true anomaly difference was linear in terms of the mean anomaly difference; 
this causes error, particularly in the along-track direction, when the mean anomaly difference is significant. The 
cross-track term component of COWPOKE also showed error with large right ascension differences. 

Replacing the linear approximation of the true anomaly difference with an exact difference of the two true anomaly 
terms substantially reduced the along-track error. For die near-circular GEO case, die true anomaly of each satellite 
as a function of time is approximated by a first order expansion in terms of eccentricity and mean anomaly which 
was shown to be effective in [6]. The cross-track component was improved by an investigation into the spherical 
geometry involved. Corrections were made to both amplitude and phasing of the cross-track component which are 
accurate for large values of right ascension of the ascending node, argument of perigee, and mean anomaly 
differences. The improved COWPOKE equations are 

dr = 
(a + ^)(l-(e + &y) a^-e") 

&ct 

Sat 

1 -f- (e + &)COS(M -1- 2esin(M) + So)    1 + ecos(D) 

= -2sin — 
I 2 

r So) Su^ 
sin(0 cos C0+ — -I- M -I- 2e sin(M) + 

V        2 2 (1) 

-t- Si sin(o} + So)+M + 2e sin(M) + dv) 

— = {Sco + SD)cos{5i) + SO. cos(0 

where 



dv = 5M-\-2(e + de)sm(M + 5M) - 2esin(M) 

Srxs the separation in the radial direction, Sxt is the cross-track separation, and Sat is the along-track separation. 
5v is the difference in true anomaly, a, e, i, Q, a, and M are the orbital elements of the reference satellite, and 5a , 
5e, Si, 5Q, 5m, and (SMare the differences in the elements of the two satellites.  jJ, is the gravitational parameter, and 

t is the time elapsed since the epoch of M . 

The along-track term still exhibits error when the 5Q and 5i terms are large. To avoid this as an error source in the 
relative orbit determination experiments, it was decided to use the along-track component from Vadali's unit sphere 
model for relative motion ["']. The Vadah unit sphere model is very similar in philosophy to COWPOKE; relative 
motion is modeled through Keplerian elements and element differences. Vadah's geometric model, however, is 
more rigorous than the simple COWPOKE approach. Here is the along-track component of Vadali's unit sphere 
model which was incorporated into COWPOKE for the remainder of this analysis: 

— = cos'(r72)cos' ((/+ Si) /2)sm(Sa) + Sv + SO^) 
r 

+ sin' {i IT) sin' ((? + 5i)ll) sin(^« -^Sv-SO) 

- sin'072)cos'((i-h ^0 /2)sin(2(0 + v) + ^cy + 5v^ SO) (3) 

- cos'072)sin'((j + Si) /2)COS(2(6J ^V)^SCO + SV- «5Q) 

+ - sin(z) sin(? -i- Si) ^m.{Sco + Sv) + sin(2(« + v) + Sa) + Sv)\ 

4. DETERMINATION OF ELEMENT DIFFERENCES 

Predictmg the relative motion of a cluster of satellites with COWPOKE requhes a set of orbital elements for the 
reference satellite and the relative elements of the second satellite. A least-squares orbit determination method was 
used to find these element differences [""]. 

COWPOKE expresses spacecraft separations in the spherical radial, along-track and cross-track reference frame, but 
the optical observations used in this effort are in the topocentric right ascension and declination frame. Therefore, 
the topocentric observations had to be converted to geocentric observations, which requires satellite range 
knowledge as well as the local sidereal time [""']. For this analysis, a constant range value was used and values of 
UTl-UTC, precession and nutation angles, and lunar terms were ignored; it is believed that these approximations do 
not have significant impact once the observations are differenced. The COWPOKE cross-track and along-track 
separations could then be equated with the geocentric right ascension and declination frame as follows: 

&ir = (5a? cos ^ - (5K;/sin ^ 
(4) 

Sd = SKtcosO + Satsm0 

where 
0 = icos{o} + v) (5) 

Let ybe the relative observation vector, and Z the state vector containing the orbital element differences. Eqs. (4) & 
(5) represent a nonlinear mapping between the state vector and the observations. In order to invert the problem, we 
must linearize the equations about a reference trajectory, X*. 



Y = 
8a 
5d 

= F(J^)«F(X*) + {X-r) 

X = \5a   Se   5i   SD.   da   SMJ 

(6) 

(7) 

The fe terms are the observed differences in right ascension, and the 5d are the observed differences in declination. 
Eq. (6) can be rearranged and terms can be redefined as follows: 

Y-F{X*) 
dF 
dX 

y — Hx 

(X-X) 

(8) 

where y is the difference between the observed and calculated relative observations, H is the linearized observation- 
state relationship, and x is the estimated correction to the state matrix. If at least 3 relative observation pairs are 
included in the >> vector, one can estimate the state deviation as shown below: 

x = {H^HyH^y (9) 

The estimate of the state can be updated in an iterative fashion, as shown below, until the solution converges. 

xi,=x;+x (10) 

Using this method, an estimate of the Keplerian element differences was obtained. This method requires that the 
Keplerian elements of the reference satellite are known. The NORAD two-line element set (TLE) of the reference 
satellite was used for the reference orbit in this study. With the element differences, the relative right ascension and 
declination of the two satellites can be predicted using COWPOiCE. 

5. SIMULATION STUDY 

In order to test die feasibility of using COWPOKE to better predict relative motion, a simulation was performed 
using 2 collocated geosynchronous satellites. Truth orbits were propagated using the Cowell Special Perturbations 
(SP) propagator internal to DGTDS. The truth orbits spanned from Jan 1 - Feb 5, 2003. Table 2 contains the 
osculating orbital elements for the satellites referenced to the mean equator and mean equinox of the B 1950.0 
coordinate system. 

Table 2. The initial orbital elements of the two satellites used in the identification study 
with epoch January 1,2003,0 hr. 

Satellitel Satellite2 
Semimajor Axis (km) 42164 42164 
Eccentricity 0.000512 0.000812 
Inclination (deg) 0.05 0.05 
Right Ascension of the 
Ascending Node (deg) 

20 340 

Argument of Perigee (deg) 33 67 
Mean Anomaly (deg) 0 6 

The next step in the process was to develop TLE representations of the truth orbits. This step was necessary since 
TLBs are used in the observation correlation process. To do this, an orbit using the GP4/DP4 propagator internal to 
DGTDS was fit to the position and velocity vectors produced by the Cowell truth trajectory.   The position and 



velocity data spanned 1 Jan to 1 Feb and were spaced at every hour. The resulting fits were accurate to aroirnd the 2 
km level RMS. Fig. 2 plots the DP4 trajectories relative to the truth orbit of Sat 1 over February 1-5, a 5-day 
prediction interval. 

One can clearly see in Fig. 2 that the TLB trajectory for Sat 2 comes closer to the Truth location for Sat 1 than the 
Truth location for Sat 2 during a significant portion of the orbit. Similarly, the TLB trajectory for Sat 1 comes close 
to the Truth location for Sat 2 during a portion of the orbit. Both of these situations could lead to a cross-tag in the 
observation correlation process (i.e., observations of Sat 2 could be incorrectly attributed to Sat 1 and vice versa). 

(0 
(0 
2 o 

Motion Relative to Satellite 1 Truth Orbit over 5 days 

30 

20 

E 
i   10 
O 
2     0 

-10 

-20 

-30 

/» \ ^^ 

/^ r/ ) m 4><><x 

1 Hn / 

fttf/ 
■ TTTI W 

y 

< , ki<'I A y 
^^ 

Sat 1 Truth 
-B-SatlTLE 
-^ Sat 2 Truth 
-^Sat2TLE 

-60 -40 -20 0 

Along-Track (km) 

20 40 

Fig. 2. TLE orbit predictions of the motion of Satellite 2 relative to Satellite 1 truth orbit 
compared to the truth relative motion. 

The mean orbital elements from the TLE fits (epoch 1 Feb) were differenced and used to initialize the COWPOKE 
equations along with the TLB elements for Sat 1. One can see in Fig. 3 that even using the flawed initial conditions 
produced by the TLB fits, the relative motion is very representative of the Truth relative motion. This signifies that 
the relative position is a powerful piece of information that can be used to help correlate optical observations at the 
sensor. 
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Fig. 3. COWPOKE relative motion predictions with TLE and trutli orbits. 

6. REAL DATA RESULTS 

Observations from Raven were used to test COWPOKE's effectiveness. Raven images were taken of the DirecTV 
4S and AMC 4 spacecraft collocated at 101° West longitude during the nights of July 23-24 and July 29-August 1, 
2003. One of these images is shown in Fig. 4. 

Raven images were used to compute the separation of the two satellites. Sat 1, the reference satellite, was chosen to 
be AMC-4, and DirecTV 4S was designated Sat 2. The reference orbit for Sat 1 was generated using the TLE from 
July 20, 2003. Other TLBs might be available at an epoch closer to the 24"', but for R&D Raven operations, the 
catalog is only updated every few days. The observed separation in right ascension and declination on the night of 
the 23'^ were used to estimate the Keplerian element differences. The observations from the 23"* didn't span a long 
enough period to accurately solve for the difference in semimajor axis, so an a priori estimate of 0 m was added for 
Sa, with a standard deviation of 1000 km. With the resulting estimate of the element differences, COWPOKE was 
used to predict the relative position of the two satellites at the time of each observation taken on the night of the 24 . 
The COWPOKE predictions are compared to the positions predicted by the TLEs at the time of each observation in 
Fig. 5. The COWPOKE prediction of the location of Sat 2 was off by an average of 155 microradians, while die 
TLE predictions differed from the observations by an average of 576 microradians. 



Fig. 4. Raven image of AMC-4 and DirecTV 4S 
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Fig. 5. COWPOKE's prediction of the position of Satellite 2 on July 24"' compared to the TLE predictions 

The observations from July 23 and 24 were used to estimate the element differences and predict the relative motion 
for July 29, when the next telescope images were taken. DP4 predictions and the COWPOKE reference orbit were 
obtained using TLBs for Sat 1 and Sat 2 from the 26* and 27^ respectively. The results for the 29* are shown in 
Fig. 6. The COWPOKE predictions differed from the truth by an average of 390 microradians, while the TLE 
predictions were off by 721 microradians. 
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Fig. 6. COWPOKE's prediction of the position of DirecTV 4S on July 29 compared to tlie TLB predictions 

The observations from July 23, 24, and 29 were then used to estimate improved element differences. Those element 
differences were used to predict the relative position of Sat 2 on the 30* and the results are plotted in Fig. 7. 
COWPOKE had an average error of 300 microradians, and the TLB for Sat 2 averaged 894 microradians. Fig. 8 
shows the results of similar predictions for July 31 using the observations from all previous nights. To be clear, the 
TLB prediction span at this point is several days while the COWPOKE prediction is only one day. 
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Fig. 7. COWPOKE's prediction of the position of DirecTV 4S on July 30 compared to the TLE predictions 

In Fig. 8, one can see that the true position of Sat 1 has shifted away from the TLB prediction since the night before. 
Also, the COWPOKB prediction no longer matches the observation for Sat 2, especially in declination. There is 
strong evidence that Sat 1 performed a stationkeeping maneuver between the 30"" and the 31^'.   Even with the 



possible maneuver, COWPOKE still provided a better estimate of the relative motion than the TLB.  COWPOKE 
had an average error of 450 microradians, and TLB for Sat 2 averaged 869 microradians. 

Motion Relative to Sat 1 Truth Orbit on 7-31-03 

1500 

«   1000 

■a 
C 
2 o 

f     0 o c 

500 

-500 

I -1000 

-1500 

xxx 
1 

^.^ 
o #^ 

I 

o 

w 

■ Sat 1 Truth 

DSatlTLE 

♦ Sat 2 Truth 

0Sat2TLE 

XCOWPOKE 

-2500 -2000 -1500 -1000 -500 

right ascension difference (microradians) 

Fig. 8. COWPOKE's prediction of the position of DirecTV 4S on July 31 compared to the TLE predictions 

Whatever the cause of the sudden shift, it was decided to start a new fit span. Only the observations from the night 
of the 31^' were used to solve for the new element differences, and these were propagated forward with COWPOKE 
to the 1" of August. The COWPOKE and TLE predictions for that night are conqsared to the observations in Fig. 9. 
COWPOKE had an average error of 210 microradians, and the TLE for Sat 2 averaged 958 microradians. One of 
the advantages of COWPOKE is that the effects of maneuvers can be mitigated by using a one day fit span while 
TLBs typically use a longer fit span and will suffer the effects of maneuvers continuously. 
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Fig. 9. COWPOKE's prediction of the position of DirecTV 4S on August 1 compared to the TLE predictions 



While the COWPOKE results are somewhat encouraging when compared to the TLB's, the overall performance is 
not as good as expected. Perturbation analysis indicate that the equations should be accurate with only a few percent 
error. The simulation results showed similar error levels. If the relative orbit estimation algorithms were functioning 
properly, one would expect to see results with errors at the few percent level. For the one day fit cases shown in Fig. 
5 and 9, larger errors might be expected due to limited observability over a short data arc. For the five day 
prediction case shown in Fig. 6, one might also expect to see larger errors due to the prediction interval. Then there 
is the case, shown in Fig. 8, where the reference satellite appears to maneuver; this would also cause prediction error. 
However, one case remains, shown in Figure 7, where several days of data are used in the estimation process and the 
prediction interval is only one orbit; the COWPOKE prediction error is as large as all of the other cases and is 
around 10% of the separation distance. This is larger than expected and indicates that there may be an unknown 
error source in the algorithm or software tools. Regardless, efforts must be made to better understand the limitations 
of this approach. 

7. CONCLUSIONS AND FUTURE WORK 

This work has shown that the COWPOKE equations can be used to provide meaningful relative motion of 
geosynchronous satellite clusters. Perturbation analysis indicated that 2-body dynamics are adequate for medium 
accuracy applications. Improvements were made to the equations, however, to account for large right ascension of 
the ascending node, argument of perigee, and true anomaly element differences. 

Estimating the Keplerian element differences and using the COWPOKE equations to predict the relative motion can 
supply valuable information in spacecraft identification. Using six nights of Raven images, it is shown that 
COWPOKE estimated the position of DirecTV 4S relative to AMC-4 much better than TLE predictions, even with 
unmodeled maneuvers. This indicates that COWPOKE holds the potential to be a valuable space surveillance tool. 

Sizable error still remains in the relative orbit prediction results. These errors are larger than anticipated so care 
must be taken to detemine the major source of this error and remove it. If this can be accomplished, the relative orbit 
estimation approach will be far more valuable. Beyond those improvements, the effects of differential SRP should 
be formulated for circular, equatorial orbits to better predict the motion of GEO clusters. 
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Satellite Formation Flight Using the Perturbed COWPOKE 
Equations 

KathrynA. Catlin"'" 
University of North Dakota, Grand Forks, North Dakota, 58202 

The motion of satellites flying in formation around the Earth is ordinarily modeled by 
Hill's Equations of relative motion. Recently, Sabol et. al. developed a set of more intuitive 
equations, known as the Cluster Orbits With Perturbations Of Keplerian Elements 
(COWPOKE) Equations. To accurately model orbital motion, these equations must be 
modified to incorporate various perturbation effects, among them J2 and drag. These effects 
have been added to the model, and simulations were run to compare this approach with 
"truth" orbits generated by Analytical Graphics, Inc.'s Satellite Tool Kit. 

Nomenclature 
S = denotes differential 
r = radial position, km 
xt = cross-track position, km 
at = along-track position, km 
a = semimajor axis, km 
e = eccentricity 
M = mean anomaly, tad 
V = true anomaly, rad 

P = cross-track angular separation 
a = along-track angular separation 
Q = right ascension of the ascending node, rad 
CO = argument of perigee, rad 
i = inclination, rad 
n = mean motion, 1/sec 

P = semilatus rectum, km 

J2 = Earth oblateness parameter, .0010826269 

^® Earth radius, 6378.1363 Ton 

■ = denotes time derivative 

(i 
= Earth gravitational parameter, 398600.4415 kmVsec^ 

t = time, seconds 

0 
= denotes initial condition 

I = denotes reference satellite 

2 = denotes second satellite 

COxy 
= placeholder for mean motion derivative 

FD = drag force, N 
V = velocity magnitude, m/sec 
BC = ballistic coefficient, kg/m^ 

p = density, kg/m^ 
m = mass, kg 

Co = drag coefficient 



A =           cross-sectional area, km 
H =           scale height, km 
heiiip =           height above the ellipsoid, km 
ho =           reference height, km 
Po =          reference density, kg/m^ 

Introduction 

INCH 1878, the dominant equations of motion to describe relative satellite position and velocity have been Hill's 
Equations. Later modified by Clohessy and Wiltshire, these equations form the simplest, most basic model of 
satellite formation flight in use today. Of course, for most applications, a robust orbit propagator such as the 
Goddard Trajectory Determination System (GTDS) provides highly accurate, near-truth results. However, on some 
occasions, propagators are not available, or an analytical representation is simply preferred. It is in these instances 
that Hill's Equations are ordinarily used to model formation flight. 

Hill's Equations, in their simplest form, are derived directly from the two-body equations of relative motion and 
do not include any orbital perturbations. Although it is possible to incorporate perturbations, the equations were 
intended to model the close approach of two satellites over a short period of time, not for indefinite periods as is the 
case for formation flight; the equations tend to break down over time. Hill's Equations assume that the orbit is 
circular and that the satellites are close together: although this works well for approach and rendezvous scenarios, the 
assunptions are not necessarily valid for most formation-flight apphcations. Also, while Hill's Equations follow 
naturally from the algebraic equations of motion of the satellites, the approach can be non-intuitive at best. 

Recently, Sabol et. al. described a novel geometric approach to formation flight modeling: the Cluster Orbits 
With Perturbations Of Keplerian Elements, or COWPOKE, Equations.' Rather than using a Cartesian, satellite- 
centered reference frame, the COWPOKE Equations are based on a spherical Earth-centered frame and use known 
Keplerian orbital element differences to directly determine the cross-track, along-track, and radial separations 
between two satellites. Not only is this direct, geometric, Keplerian approach more intuitive than the algebraic Hill 
model, but because existing perturbation models are ordinarily given in terms of Keplerian element differences, 
integrating those models into the equations of motion is made considerably simpler. 

Prior to this investigation, however, incorporation of any perturbations into the COWPOKE Equations had not 
been attempted; although Hill et al. have inqiroved and extended the equations for use on geosynchronous orbit.^ 
Here, I describe the steps taken to include both the J2 (Earth oblateness) and atmospheric drag perturbations into the 
COWPOKE Equations, and compare the resulting propagations with those generated by Satellite Tool Kit's SGP4 
propagator. I have also included in the Appendix a similar derivation for Hill's Equations with perturbations, 
although these results have not been correlated with the COWPOKE or STK propagations. 

Approach 

The inqiroved COWPOKE Equations are as follows: 

(a + Sa)(l-(e + Sey) a(l-e') 
or = —  

l + (e-l-^e)cos(M +2esin(M) + ^v)    l + ecos(v) 

P = = -2 sin sin(Ocos (» + -;^-i-M+2esln(M)-^- — sin(Ocos 
1) \ 2 ^    '     1 

-^5iim{co-\-5co-^M+ le%m{M)->r5y) (1) 



a = = (So) +Sv) cos( Si) + SQ cos( i) 

where dr is the radial displacement, a and y9 are the along-track and cross-track angular separations, respectively, 
a is the semimajor axis of the reference satellite's orbit, e is its eccentricity, i its inclination, to its argiunent of 
perigee, Q its right ascension of the ascending node, M its mean anomaly, v its true anomaly, and r the radius. Sat 
and 5xt denote along-track and cross-track linear separations. For details on the derivation of these equations, see 
Refs. 1 and 2. 

Addition of the J2 (fnst-order Earth oblateness) perturbation effects secular changes in the right ascension of the 
ascending node, argument of perigee, and mean anomaly: 

^ = Mi^(4-5sin^) (2) 
4p' 

M= ®-^- (2-3sin^0 
4p 

where n = J-^ is the mean motion, ft the Earth's gravitational parameter, p the semilatus rectum, J2 the first- 
\a 

order Earth zonal harmonic coefficient, and R^ the Earth's radius. 

An inspection of Equations 1, 2, and 3 will reveal that inserting these secular effects into the COWPOKE 
Equations requires deriving new expressions for the dQ, 5co, and 5v terms. The dQ term is foimd by the following 
method: 

SQ, = Q2 ~^i 

= SQ„ + {ti^-Ci^)t 

where ^3^ 

2\a' [a{\-e^)Y "i^-^J3-?::7r^i^^°^'' 

}_ \_Ji ^e-^2 
''"    liia + Saf {{a + Sa)[\-{e + Sef]Y ^2=-TJ,    ^.., ..      ..    "/    .....2cos0" + ^0 

where orbital elements of satellite 2 are expressed as the elements of the reference satellite plus a differential, and 
the subscript o denotes an initial given quantity. Similarly, 



S(o = 5co„ +{0)2 -d>i)t 

where 

0), = 
3 [ju      RlJ: 

'    4\a' [a(l-e')] 

3  I      IT Jl\/T\ t/  ^ 

(4) 

^'     4V(a + Say {(a + Sa)[l-ie + Sef]f 
[4-5sm\i + di)] 

The true anomaly is a bit more difficult. Trae anomaly difference is approximated by a first order expansion in 
terms of eccentricity and mean anomaly:^ 

Sv = SM + 2ie + Se) sin(M + SM)-2e sin(M) (5) 

Therefore, to determine the change in true anomaly, the change in mean anomaly must first be derived. Since for 

u 
no perturbations, M = n , for the J2 case, M = n + Mj^, with Mj^ firom Equation 2. We know that n = J—^ , 

so letting CO    =n + Mj , SM can be found as above: 

m=SM„+(o)^^-a>^^)t 
■ 0 

where 

CO 
•"yi 

1 + 
2RljJ\ + e^ 

2\i2 4 [a(l-e^)] 
(2-3sin'0 (6) 

^i 
^^2=Al/„   .   V„^3 {a + Say A{{a + da)[\-{e + def]Y^ ^ 

All of these new element differences are inserted back into the original COWPOKE Equations (Eqn. 1), and if 
the only perturbation desired is J2, the derivation stops here. 

Incorporation of the atmospheric drag perturbation follows a similar course. The force of drag is 

F„ = 
2 BC 

(7) 

withp the atmospheric density, Fthe along-track velocity, and BC, the ballistic coefficient of the satellite, equal 
to 



BC = -^ (8) 

where m is the satellite's mass, Co is its drag coefficient, and A is its area normal to the velocity. Atmospheric 
density will, of coxirse, vary throughout the satellite's orbit. There are a number of approximations in use to calculate 
density; I have selected a simple exponential model for piuposes of this simulation, where 

with po and h^ reference density and reference altitude, heiup the actual attitude above the ellipsoid, and H the 
scale height. These quantities can be found in a table such as Table 8-4 in Reference 3. 

Given Equations 7, 8, and 9, the variation of parameters method is used to determine the element differences due 
to drag:* 

3 

p    2 (1 + e^ +2ecosv)2  , 
da = —^a -5^ y^-dv 

BC (1 + ecosv)^ 
3 

de = —^a(l-e^)- -^^(cosv + e)dv 
BC (1 + ecosv)' 

di = 0 (10) 

dn = o 

p a(l-e^)(l + e^-i-2ecosv)2   . 
da = —^—i -^!—smvdv 

BC      e (l + ecosv)^ 

Again, as above, the final Keplerian element differences become 

da = da^ + {da^ - da^ )t 

de = de„ + (de^ - de^ )t (11) 

dco = dcOj^ + {dco^ - d(oJt 

where, again, the subscript o denotes an original given element difference, and d(aj2 is the argument of perigee 
difference due to Earth oblateness as found above. These fmal element differences are substituted back into 
Equations 1, and the derivation of the COWPOKE Equations with h and atmospheric drag perturbations is conplete. 
An examination of the Appendix should convince the reader that this method is considerably sin^ler than the 
incorporation of perturbations into Hill's Equations. 



Methodology and Results 

To validate and test the above derivations, simulations were run using a set of mean orbital elements with all 
element differences equal to .01. The elements and differences are given in Table 1. 

The modified COWPOKE Equations are modeled in Matlab as above. The simulations run for 60 hours with 
data points taken at 1-minute intervals. To validate and verify the results, simulations are also run using STK's SGP4 
propagator. In STK, the relative position of the two satellites is automatically calculated as a vector; the data is 
exported to Matlab and compared with the COWPOKE-derived orbit. For the drag perturbation, the mass of both 
satellites is taken to be 1000 kg and the cross-sectional area .000001 kml The drag coefficient of satellite 1 is 2, and 
the drag coefficient of the second satellite is slightly varied, at 2.001. This results in an approximate 250000 kg/km 
difference in ballistic coefficient. These parameters are shown in Table 2. 

Figures 1 through 3 show the radial, along-track, and cross-track differences, respectively, for both propagation 
methods; the second plot in each figure shows the error between COWPOKE and STK. 

Table 1: Keplerian Elements and Element Differences 

Reference 
Elements 

Element 
Differences 

a (km) T7000 .01 
e .01 .01 

i(rad) .785 .01 
(D (rad) 0 .01 
Q (rad) 4.712 .01 
Mo (rad) 1.751 .01 

Table 2: Other Parameters Used for Propagation 

Parameter Value 
Propagator STK SGP4 

Step Size (seconds) 60 
Sat 1 mass (kg) 1000 
Sat 2 mass (kg) 1000 
Sat 1 area (km^) .000001 
Sat 2 area (km^) .000001 

Sat 1 drag 
coefficient 

2 

Sat 2 drag 
coefficient 

2.001 
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Figure 1: Radial Differences 
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Conclusion 

The COWPOKE Equations have been modified to mclude the effects of both zonal harmonic and atmospheric 
drag perturbations. This was expected to increase the accuracy of the equations with respect to a "truth" orbit as 
propagated by a commercial orbit integration program, rendering them more useful as a single model of relative 
motion between satellites in formation flight scenarios. When compared to the orbit produced by STK's SGP4 
propagator, the modified COWPOKE equations instead showed somewhat decreased accuracy. A number of reasons 
can be put forth for this, notably the different propagation methods used in this and previous papers. Before drawing 
a fmal conclusion about the modified COWPOKE Equations as here derived, a similar simulation should be run 
utilizing the GTDS software - the same propagator that was used in the original COWPOKE papers.^ It would 
similarly be constructive to compare both the COWPOKE and STK results with the orbit defined by Hill's Equations 
with perturbations, which are derived in the Appendix. Furthermore, simulations should be run using observational 
data fi:om real satellites to conqjare the COAATOKE results with reality. If, indeed, such research as indicated above 
should prove these modified COWPOKE Equations accurate and rehable, additional perturbations such as solar 
radiation pressure and third-body gravitational effects can be incorporated into the equations, further constraining the 
forces acting on the satellite and drawing the simulation ever closer to the actual, "truth" position of the orbit. 

Appendix: Hill's Equations Solved with J2 and Drag Perturbations 
Hill's Equations solve the relative two-body equation of motion: 

rrel= T + ^~ + Mother ^^^> 

for two satellites traveling close to each other on a near-circular orbit. The equations are as follows: 

y + 2(0X = f^ (13) 

where the^ are components of F^^f^^^. The equations are solved many places, including Ref 3; the position and 

velocity solutions are: 



X 
x(t) = —sin(o)t)- 

0) 

y(t) = 
( 

6x„ + 
V 

4j, 

( 
«■ 

V 
3x. + 

CO  ) 
cos(fyO + 4x„ + 

V 

2>'o 

a 

Ix. r 
sm{(ot) + —-co5{Q)t) - (6cox^ + 3y)t + 

0) 
yo-- 

2jC 
(O , 

z(t) = z„ cos(o)t) + -^sin(»0 
0) 

x(t) = x„ cos{o)t) + (3o)x^ + 2yjsm(at) 

y(t) = (6o)x„ + 4y^)cos(6)t) - 2x„ sim{at) - (6o)x„ + 3y„) 

z(t) = -z^cosm{o)t) + i„ cos(cDt) 

(14) 

The secular effects of first-order zonal harmonics (J2) on co, Q, and M are given in Equations 2. McLaughlin et. 
al.' have shown die method for introducing these secular variations into Hill's Equations, along with differential 
effects due to inclination differences between the two satellites. 

Adding the drag perturbation to Hill's Equations is more complicated. In this drag-and-J2-only case,;^ and^ in 
Equation 13 are both zero, andfy is equal to FQ, since the drag force acts only in opposition to the along-track 
velocity vector. Starting with Equation 7, a relative drag force is calculated by differencing the forces for the two 
satellites. Each individual parameter for the second satellite is expressed as the value for satellite 1 plus a 
differential. For example, V2 is expressed as 

V,=Vi+SV (15) 

Simplifying and removing second-order and higher differentials from the resulting expression, the relative drag 
force can finally be expressed as 

fo = 
1 

2BC,{BC,+dBC) 
{2V,p,BC,8V -H V^BC,5p - V,^p,5BC) (16) 

Setting;^ in Equation 13 equal to fD, and recognizing that the z force is uncoupled to the x wAy components, the 
system of two equations can be solved. The solution process is as follows: Differentiate the x equation once, then 
solve via Laplace transforms, and differentiate the result to arrive and the :ic-velocity solution. The y equation can be 
solved by simple integrate. The resulting drag solution is then merged with the J2 solution^ to arrive at the following 
set of equations describing the motion of one satellite with respect to another: 



x = —^smco„,t- 
0)^ 

xy 
■xy 

3^.+ 
2y.^ 
O) 

2v 

^ J 
03 xy 

1 
t COS or 

0) BC(BC + SBC) 
[iVpBCSV + V^BCSp - V^pSBC) 

y = 
^ 4y^ 

\ 
(O xy J 

2x                                                  Ix       ( • • \ 
sin cot + —^cos (oj - da xj - 3yJ + y„  + a[SD. cos i + Sd) + SM)t 

0) y y fQ 
xy xy 

3 2 
- o^t'^ +2t sin co^t 

^ ^"^ -{iVpBCSV + V'BCSp-V'pSBC) 
ci)„BC{BC + SBC) 

z = z cosco t + —^smo)J-aSCltsinicosa)J o z z *• 

x = x„ COS m^t - (3o)^x„ + 2y„ )sin a^t 
xy 

1 + sin o)„,t 
+ - '^ AlVpBCSV + V'BCSp - V^pSBC) 

Q)^BC(BC + SBC) 

y = i^co^x^ + Ay„ )cos (o^t - 2i„ sin a^t - 6co^x„ - 3y„ + a[dtl cos i + d6) + 5M) 

-(o„t-\-2-2cosQ)„,t 
2   ^         ^ '^(2VpBCSV + V^BCSp-V^p5BC) 

0},yBC{BC + SBC)  ^ f-        ^       ; 

z = -co^z^ sin (oJ + z„ cos a^t-adCl sin /(cos coj - tco^ sin co/} 

(17) 

Despite the rather perfunctory treatment given the derivation in this Appendix, it should be clear from a glance at 
the preceding equations that working with the simple elegance of the COWPOKE Equations is eminently preferable 
to this mess, in addition to providing an inherently more accurate representation of relative satellite dynamics in a 
formation flight situation. 
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